Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array

نویسندگان

  • Ben Wang
  • Wei Wang
  • Yujie Gu
  • Shujie Lei
چکیده

Quasi-stationary signals have been widely found in practical applications, which have time-varying second-order statistics while staying static within local time frames. In this paper, we develop a robust direction-of-arrival (DOA) estimation algorithm for quasi-stationary signals based on the Khatri-Rao (KR) subspace approach. A partly-calibrated array is considered, in which some of the sensors have an inaccurate knowledge of the gain and phase. In detail, we first develop a closed-form solution to estimate the unknown sensor gains and phases. The array is then calibrated using the estimated sensor gains and phases which enables the improved DOA estimation. To reduce the computational complexity, we also proposed a reduced-dimensional method for DOA estimation. The exploitation of the KR subspace approach enables the proposed method to achieve a larger number of degrees-of-freedom, i.e., more sources than sensors can be estimated. The unique identification condition for the proposed method is also derived. Simulation results demonstrate the effectiveness of the proposed underdetermined DOA estimation algorithm for quasi-stationary signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array

Underdetermined direction-of-arrival (DOA) estimation for quasi-stationary signals impinging on a uniform circular array (UCA) with M sensors is addressed in this paper. We apply the Khatri–Rao (KR) approach to the UCA and obtain a new signal model which is capable of providing OðMÞ sensors. Meanwhile, the virtual steering matrix can be decomposed into a product of characteristic matrix dependi...

متن کامل

تخمین جهت منابع با استفاده از زیرفضای ختری-رائو

This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

Underdetermined High-Resolution DOA Estimation: A 2ρth-Order Source-Signal/Noise Subspace Constrained Optimization

For estimating the direction of arrival (DOA)s of non-stationary source signals such as speech and audio, a constrained optimization problem (COP) that exploits the spatial diversity provided by an array of sensors is formulated in terms of a noise-eliminated local th-order cumulant matrix. The COP solution provides a weight vector to the look direction such that it is constrained to the th-ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017